Geometric Sequences and Series Section 6.7

Warm-up: Find the next three terms of the sequence.

1. 2, 4, 8, 16, _____, ____, ____

2. $-\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \dots, \dots$
3. 1, 4, 9, 16,,
4. 12, 36, 108,,,
Definition of a Geometric Sequence
A sequence is geometric
This ratio is called
Example 1: Write the first five terms of the geometric sequence whose first term is 3 and whose ration is 2.
The nth Term of a Geometric Sequence
Formula:
Example 2: Find the 15 th term of the geometric sequence whose first term is 20 and whose common ratio is 1.05.
Practice Problem 1: Find the ninth term of the geometric sequence whose first term is 4 and whose common ratio is ½.

Example 3: Find a formula for the *n*th term of the following geometric sequence. What is the ninth term?

Practice Problem 2: Find a formula for the *n*th term of the following geometric sequence. What is the tenth term?

$$6, -2, \frac{2}{3}, \dots$$

When you know *any* two terms of a geometric sequence, you can use that information to find a formula for the nth term of the sequence.

Example 4: The fourth term of a geometric sequence is 125, and the 10^{th} term is $\frac{125}{64}$. Find the 14^{th} term.

Practice Problem 3: The second term of a geometric sequence is -18, and the fifth term is $\frac{2}{3}$. Find the sixth term.

The Sum of a Finite Geometric Sequence

Formula:

Example 5:

a) Find the sum:
$$\sum_{n=1}^{12} 4(0.3)^n$$

b) Find the sum:
$$\sum_{n=0}^{12} 5(2)^n$$

Practice Problem 4: Find the sum: $\sum_{n=0}^{15} 2 \left(\frac{4}{3}\right)^n$

The Sum of an Infinite Geometric Series

Formula:

Example 6: Find each sum

a)
$$\sum_{n=0}^{\infty} 4(0.6)^n$$

$$b) \sum_{n=0}^{\infty} 5 \left(\frac{1}{2}\right)^n$$

$$c) \sum_{n=0}^{\infty} 2(3)^n$$

Geometric Sequences and Series Section 6.7

Class Work

Determine whether the sequence is geometric. If it is, find the common ratio.

2. 9, -6, 4,
$$-\frac{8}{3}$$
, ...

Write the first five terms of the geometric sequence.

3.
$$a_1 = 2$$
, $r = \frac{1}{3}$

4.
$$a_1 = 4$$
, $r = \sqrt{3}$

Write the first five terms of the geometric sequence. Find the common ratio and write a formula for the nth term of the sequence.

5.
$$a_1 = 81$$
, $a_{k+1} = \frac{1}{3}a_k$

6.
$$a_1 = 5$$
, $a_{k+1} = -3a_k$

Find a formula for the nth term of the geometric sequence. Then find the indicated term.

Find the sum.

9.
$$\sum_{n=1}^{9} (-2)^{n-1}$$

10.
$$\sum_{n=0}^{6} 500(1.04)^n$$

$$11. \sum_{n=0}^{\infty} 6 \left(\frac{2}{3}\right)^n$$

12.
$$\sum_{n=0}^{\infty} 8 \left(\frac{5}{3} \right) n - 1$$