6-1 Key Features of Exponential Functions

Essential Question: How do graphs and equations reveal key features of exponential growth and decay functions?

Learning Goal:

➤ Recognize the key features of exponential functions, such as asymptotes, end behavior, domain, range, and intercepts

Standard(s):

MAFS.912.F-IF.2.4: For a function that models a relationship between two quantities, interpret key features of graphs, interpret key features of graphs...and sketch graphs showing key features....intercepts; intervals where function is

- > Get notes out from the lesson
- Get whiteboards ready

What is an exponential function?

X	Υ		
-2	1/4		
-1	1/2		
0	1 7. 2		
1	2 4.7		
2	4		
3	8		

f(x) = 2

Exponential

X	Υ
-2	97-7
-1	3
0	1) - 5
1	1/3
2	1/9
3	1/2-
	<i>,</i> , , , , , , , , , , , , , , , , , ,

 $f(x) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \times$ Exponential $(x) = (x)^{2}$

Which of the following is considered an exponential function?

a.
$$f(x) = 3x^2$$

a.
$$f(x) = 3x^2$$

b. $f(x) = \frac{1}{2} \cdot 4^{-x}$

c.
$$f(x) = 3x + 8$$

$$d. \ f(x) = x^3$$

d.
$$f(x) = x^3$$

e.
$$f(x) = \frac{1}{x}$$

f. None of the above

Which of the following is considered an exponential function?

a.
$$f(x) = 3x^2$$

b. $f(x) = \frac{1}{2} \cdot 4^{-x}$

$$c. f(x) = 3x + 8$$

$$d. \ f(x) = x^3$$

d.
$$f(x) = x^3$$

e. $f(x) = \frac{1}{x}$

f. None of the above

Come up with 1 real world example of an exponential function

Example of an Exponential Function

$$f(x) = \frac{1}{2} \underbrace{4^{-x}}$$

Growth or decay? De (my Parent function; L) X

Transformations:

$$\left(\frac{1}{3}\right)^{X}$$

$$\left(\frac{3}{2}\right)^{\chi}$$

Find the parent function of

$$f(x) = 4 \cdot 3x + 1$$

$$X' = X + 1$$

$$-1$$

$$X' = X + 1$$

$$X' = X + 1$$

$$X' = X + 1$$

Find the parent function of

$$f(x) = 4 \cdot 3^{x+1}$$

Solution: $f(x) = 3^x$

Find the transformations of

$$f(x) = 4 \boxed{3^{x+1}}$$

- a. Vertical compression by 4, shift left 1
- b. Vertical stretch by 4, shift right 1
- c. Shift up 4, Shift right 1
- d. Shift up 4, Shift left 1
- e. Vertical stretch by 4, horizontal stretch by 1
- f. None of the above

Find the transformations of

$$f(x) = 4 \cdot 3^{x+1}$$

- a. Vertical compression by 4, shift left 1
- b. Vertical stretch by 4, shift right 1
- c. Shift up 4, Shift right 1
- d. Shift up 4, Shift left 1
- e. Vertical stretch by 4, horizontal stretch by 1 f. None of the above

Graph (Parent Function)

X	Υ
-2	1/4
-1	1/2
0	1
1	2
2	4
3	

 $y = 2^x$

Asymptote:

Graph (Transformation)

y =	$3(2^{2x-5})-1$	

x'= 2x-5 +5 +5

	5-	fx
2	2	

$$\chi' =$$

X	$y = 2^{x}$ $1/4$ $1/2$	x' =	y' = 3 y -
-2	1/4		/
-1	1/2		
0	1		
1	2		
2	4		

$$y = 3 \cdot 2^{2x-5} - 1$$

X	$y = 2^x$	x' = x/2 + 5/2	y' = 3y - 1
-2	1/4	(-2)/2 + 5/2 = 1.5	3(1/4)-1 = 3/4 - 1 = -0.25
-1	1/2	$(-1)/2 + 5/2 = \frac{2}{2}$	3(1/2)-1 = 3/2-1= <mark>0.5</mark>
0	1	(0)/2 + 5/2 = 2.5	3(1)-1= 3-1= <mark>2</mark>
1	2	(1)/2 + 5/2 = 3	3(2)-1= 6-1= <mark>5</mark>
2	4	(2)/2+5/2=3.5	3(4)-1= 12-1= <mark>11</mark>

(1.5, -0.25) (2, 0.5) (2.5, 2) (3, 5) (3.5, 11)

What is the equation of the horizontal asymptote?

What is the equation of the horizontal asymptote?

$$y = -1$$

What is the end behavior?

As
$$x \to -\infty$$
, $y \to \frac{1}{8}$
As $x \to \infty$, $y \to \frac{1}{8}$

.

What is the equation of the horizontal asymptote?

What is the end behavior?

What are the transformations?

$$y = 3 \cdot 2^{2x-5} - 1 .$$

$$x y = 2^x x' = x/2 + 5/2 y' = 3y - 1$$

Fill in the blank.

What are the transformations?

$$y = 3 \cdot 2^{2x-5} - 1$$

$$x y = 2^x x' = x/2 + 5/2 y' = 3y - 1$$

Vertical

Stretch

by 3

(Vertical/Horizontal) (Stretch/Compression)

Horizontal

Compression

by 1/2

(Vertical/Horizontal) (Stretch/Compression)

Shift

Right

by 5/2

(Up/Down/Left/Right)

Shift

Down

by 1

(Up/Down/Left/Right)

Graphing Activity

- > Every one gets a Graphing Exponential Functions FlipBook
- ➤ Each group will go to a station to work the problems in the station on the FlipBook for about 4-5 minutes
- ➤ We will rotate through the different stations